Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.986
Filtrar
1.
Physiol Plant ; 176(2): e14281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606698

RESUMO

Water deficit stress limits net photosynthetic rate (AN), but the relative sensitivities of underlying processes such as thylakoid reactions, ATP production, carbon fixation reactions, and carbon loss processes to water deficit stress in field-grown upland cotton require further exploration. Therefore, the objective of the present study was to assess (1) the diffusional and biochemical mechanisms associated with water deficit-induced declines in AN and (2) associations between water deficit-induced variation in oxidative stress and energy dissipation for field-grown cotton. Water deficit stress was imposed for three weeks during the peak bloom stage of cotton development, causing significant reductions in leaf water potential and AN. Among diffusional limitations, mesophyll conductance was the major contributor to the AN decline. Several biochemical processes were adversely impacted by water deficit. Among these, electron transport rate and RuBP regeneration were most sensitive to AN-limiting water deficit. Carbon loss processes (photorespiration and dark respiration) were less sensitive than carbon assimilation, contributing to the water deficit-induced declines in AN. Increased energy dissipation via non-photochemical quenching or maintenance of electron flux to photorespiration prevented oxidative stress. Declines in AN were not associated with water deficit-induced variation in ATP production. It was concluded that diffusional limitations followed by biochemical limitations (ETR and RuBP regeneration) contributed to declines in AN, carbon loss processes partially contributed to the decline in AN, and increased energy dissipation prevented oxidative stress under water deficit in field-grown cotton.


Assuntos
Fotossíntese , Água , Transporte de Elétrons , Folhas de Planta , Desidratação , Carbono , Trifosfato de Adenosina
2.
Proc Natl Acad Sci U S A ; 121(17): e2320259121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588439

RESUMO

Plant leaves, whose remarkable ability for morphogenesis results in a wide range of petal and leaf shapes in response to environmental cues, have inspired scientific studies as well as the development of engineering structures and devices. Although some typical shape changes in plants and the driving force for such shape evolution have been extensively studied, there remain many poorly understood mechanisms, characteristics, and principles associated with the vast array of shape formation of plant leaves in nature. Here, we present a comprehensive study that combines experiment, theory, and numerical simulations of one such topic-the mechanics and mechanisms of corrugated leaf folding induced by differential shrinking in Rhapis excelsa. Through systematic measurements of the dehydration process in sectioned leaves, we identify a linear correlation between change in the leaf-folding angle and water loss. Building on experimental findings, we develop a generalized model that provides a scaling relationship for water loss in sectioned leaves. Furthermore, our study reveals that corrugated folding induced by dehydration in R. excelsa leaves is achieved by the deformation of a structural architecture-the "hinge" cells. Utilizing such connections among structure, morphology, environmental stimuli, and mechanics, we fabricate several biomimetic machines, including a humidity sensor and morphing devices capable of folding in response to dehydration. The mechanisms of corrugated folding in R. excelsa identified in this work provide a general understanding of the interactions between plant leaves and water. The actuation mechanisms identified in this study also provide insights into the rational design of soft machines.


Assuntos
Arecaceae , Desidratação , Folhas de Planta , Água/fisiologia , Plantas
3.
Zoolog Sci ; 41(1): 132-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587526

RESUMO

Vertebrates have expanded their habitats during evolution, which accompanies diversified routes for water acquisition. Water is acquired by oral intake and subsequent absorption by the intestine in terrestrial and marine animals which are subjected to constant dehydration, whereas most water is gained osmotically across body surfaces in freshwater animals. In addition, a significant amount of water, called metabolic water, is produced within the body by the oxidation of hydrogen in organic substrates. The importance of metabolic water production as a strategy for water acquisition has been well documented in desert animals, but its role has attracted little attention in marine animals which also live in a dehydrating environment. In this article, the author has attempted to reevaluate the role of metabolic water production in body fluid regulation in animals inhabiting desiccating environments. Because of the exceptional ability of their kidney, marine mammals are thought to typically gain water by drinking environmental seawater and excreting excess NaCl in the urine. On the other hand, it is established that marine teleosts drink seawater to enable intestinal water and ion absorption, and the excess NaCl is excreted by branchial ionocytes. In addition to the oral route, we suggest through experiments using eels that water production by lipid metabolism is an additional route for water acquisition when they encounter seawater. It seems that metabolic water production contributes to counteract dehydration before mechanisms for water regulation are reversed from excretion in freshwater to acquisition in seawater.


Assuntos
Desidratação , Água , Animais , Cloreto de Sódio , Água do Mar , Vertebrados , Mamíferos
4.
J Plant Physiol ; 296: 154243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593590

RESUMO

Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.


Assuntos
Aquaporinas , Vitis , Desidratação/metabolismo , Resistência à Seca , Folhas de Planta/metabolismo , Secas , Aquaporinas/metabolismo , Vitis/fisiologia
5.
Acta Derm Venereol ; 104: adv18685, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566405

RESUMO

Atopic dermatitis (AD), a chronic inflammatory skin disease, manifests as an intractable itch. Psychological stress has been suggested to play a role in the onset and worsening of AD symptoms. However, the pathophysiological relationships between psychological stressors and cutaneous manifestations remain unclear. To elucidate the mechanisms underlying the stress-related exacerbation of itch, we investigated the effects of water stress, restraint stress and repeated social defeat stress on itch-related scratching behaviour, mechanical alloknesis and dermatitis in male NC/Nga mice with AD-like symptoms induced by the repeated application of ointment containing Dermatophagoides farina body. NC/Nga mice with AD-like symptoms were subjected to water stress, restraint stress and repeated social defeat stress, and their scratching behaviour, sensitivity to mechanical stimuli (mechanical alloknesis) and severity of  dermatitis were evaluated. Social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress showed slower improvements in or the exacerbation of AD-like symptoms, including dermatitis and itch. In the mechanical alloknesis assay, the mechanical alloknesis scores of social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress were significantly higher than those of non-exposed social defeat stress+ Dermatophagoides farina body- and social defeat stress-treated mice. These results suggest that psychological stress delays improvements in dermatitis by exacerbating itch hypersensitivity in AD.


Assuntos
Dermatite Atópica , Masculino , Camundongos , Animais , Desidratação , Prurido/etiologia , Pele , Estresse Psicológico/complicações , Modelos Animais de Doenças
6.
BMJ Paediatr Open ; 8(1)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604769

RESUMO

OBJECTIVE: The objective was to assess the association between nutritional and clinical characteristics and quantitative PCR (qPCR)-diagnosis of bacterial diarrhoea in a multicentre cohort of children under 2 years of age with moderate to severe diarrhoea (MSD). DESIGN: A secondary cross-sectional analysis of baseline data collected from the AntiBiotics for Children with Diarrhoea trial (NCT03130114). PATIENTS: Children with MSD (defined as >3 loose stools within 24 hours and presenting with at least one of the following: some/severe dehydration, moderate acute malnutrition (MAM) or severe stunting) enrolled in the ABCD trial and collected stool sample. STUDY PERIOD: June 2017-July 2019. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Likely bacterial aetiology of diarrhoea. Secondary outcomes included specific diarrhoea aetiology. RESULTS: A total of 6692 children with MSD had qPCR results available and 28% had likely bacterial diarrhoea aetiology. Compared with children with severe stunting, children with MAM (adjusted OR (aOR) (95% CI) 1.56 (1.18 to 2.08)), some/severe dehydration (aOR (95% CI) 1.66 (1.25 to 2.22)) or both (aOR (95% CI) 2.21 (1.61 to 3.06)), had higher odds of having likely bacterial diarrhoea aetiology. Similar trends were noted for stable toxin-enterotoxigenic Escherichia coli aetiology. Clinical correlates including fever and prolonged duration of diarrhoea were not associated with likely bacterial aetiology; children with more than six stools in the previous 24 hours had higher odds of likely bacterial diarrhoea (aOR (95% CI) 1.20 (1.05 to 1.36)) compared with those with fewer stools. CONCLUSION: The presence of MAM, dehydration or high stool frequency may be helpful in identifying children with MSD who might benefit from antibiotics.


Assuntos
Infecções Bacterianas , Disenteria , Criança , Humanos , Lactente , Pré-Escolar , Desidratação/complicações , Desidratação/tratamento farmacológico , Estudos Transversais , Diarreia/complicações , Diarreia/microbiologia , Disenteria/complicações , Disenteria/tratamento farmacológico , Antibacterianos/uso terapêutico , Transtornos do Crescimento/complicações , Transtornos do Crescimento/tratamento farmacológico
7.
Compr Rev Food Sci Food Saf ; 23(3): e13346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634193

RESUMO

Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.


Assuntos
Desidratação , Conservação de Alimentos , Humanos , Dessecação , Água , Tecnologia
8.
Khirurgiia (Mosk) ; (4): 16-28, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38634580

RESUMO

OBJECTIVE: To analyze morphological changes in wall of functioning and non-functioning small intestine in patients with preventive ileostomy and to determine histological predictors of water-electrolyte disorders. MATERIAL AND METHODS: We prospectively analyzed 57 patients >18 years old who underwent rectal resection with preventive ileostomy between January 2022 and November 2023. Anthropometric data included gender, age, body mass index, ECOG and ASA classes. Complications associated with large losses through ileostomy were water-electrolyte disorders, dehydration and acute renal failure with repeated hospitalization. Morphological analysis implied intraoperative full-layer biopsy of small intestine on anterior abdominal wall (ileostomy). Intraoperative biopsy of efferent and afferent loops was also carried out. Tissue samples were examined by light microscopy. We analyzed mean height of mucous membrane villi and depth of crypts, as well as their ratio. Fibrosis and swelling of submucosa were evaluated too. The results were analyzed in the SPSS Statistics 20 software. RESULTS: Mean height of intestinal villi <465 microns (p=0.028), ratio of their height to crypt depth <4.38 (p=0.034) and submucosal fibrosis (p=0.031) significantly affected malabsorption and readmission of patients. The risk of readmission was 11.5 and 5.5 times higher in univariate analysis. Multivariate analysis revealed in-hospital dehydration with resumption of infusion therapy as a predictor of readmission (p=0.046). CONCLUSION: Ileostomy is a certain stress for the patient's body. Not every patient is able for adaptation. One of the adaptation mechanisms is hypertrophy of mucous membrane villi involved in digestion. This mechanism is less pronounced in patients with repeated hospitalizations. Preoperative morphological examination of ileum mucosa may be an additional objective predictor of possible complications of preventive ileostomy.


Assuntos
Neoplasias Retais , Desequilíbrio Hidroeletrolítico , Humanos , Adolescente , Desidratação/complicações , Água , Ileostomia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Desequilíbrio Hidroeletrolítico/etiologia , Neoplasias Retais/cirurgia
9.
Sci Rep ; 14(1): 6368, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493219

RESUMO

Water is a scarce, strategic resource and the most important input for economic development, especially in agricultural countries such as Brazil. Cocoa production is directly related to water availability, and, as climate changes, selecting drought-tolerant genotypes is vital to keep cacao crops sustainable. Here, we evaluated cacao genotypes under irrigated and water-stressed conditions and selected drought-tolerant ones based on nutritional and physiological traits. Thirty-nine genotypes were monitored for three years for agronomic traits and higher fruit yield. After this evaluation, the 18 most promising genotypes were evaluated in a randomized block design, under a 2 (with and without irrigation)  ×  18 (genotypes) factorial arrangement, with three replicates and five plants per plot. We evaluated seven physiological and 11 nutritional traits, selecting genotypes based on the Genotype-by-Trait Biplot approach. Significant effects (p < 0.05) were observed for the nutritional traits N, P, Mg, S, Zn, Cu, Mn and for the physiological traits CO2 assimilation rate (A), stomatal conductance (gs), transpiration (E), intercellular and atmospheric CO2 concentrations (Ci/Ca), intrinsic water use efficiency (A/gs), instantaneous water use efficiency (A/E), and instantaneous carboxylation efficiency (A/Ci), as determined by analysis of variance. The genotype  ×  irrigation treatment interaction was significant (p < 0.05) for the traits A, gs, and E. Genotypes CP 41, CP 43, and CCN 51 exhibited superior performance for both nutritional and physiological traits (A, gs, and E). In the irrigated environment, CP 41 showed superiority in traits such as P, A/E, A/gs, Mn, S, and Zn. Conversely, under non-irrigated conditions, CP 43 exhibited better performance in nutritional properties, specifically Mn, Mg, and Zn. Notably, in both irrigated and non-irrigated environments, CCN 51 excelled in key physiological traits, including A/Ci, A/E, and A/gs. This robust performance across diverse conditions suggests that these three genotypes possess physiological mechanisms to endure water-stressed conditions. Our research can generate valuable insights into these genotypes informing suitable choices for cocoa cultivation, especially in the context of global climate change.


Assuntos
Cacau , Cacau/genética , Dióxido de Carbono , Fenótipo , Genótipo , Água/fisiologia , Desidratação
10.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540672

RESUMO

As temperatures continue to modify due to weather changes, more regions are being exposed to extreme heat and cold. Physiological distress due to low and high temperatures can affect the heart, blood vessels, liver, and especially, the kidneys. Dehydration causes impaired cell function and heat itself triggers cellular stress. The decline in circulating plasma volume by sweat, which stresses the renal and cardiovascular systems, has been related to some molecules that are crucial players in preventing or provoking cellular damage. Hypovolemia and blood redistribution to cutaneous blood vessels reduce perfusion to the kidney triggering the activation of the renin-angiotensin-aldosterone system. In this review, we expose a deeper understanding of the modulation of molecules that interact with other proteins in humans to provide significant findings in the context of extreme heat and cold environments and renal damage reversal. We focus on the molecular changes exerted by temperature and dehydration in the renal system as both parameters are heavily implicated by weather change (e.g., vasopressin-induced fructose uptake, fructogenesis, and hypertension). We also discuss the compensatory mechanisms activated under extreme temperatures that can exert further kidney injury. To finalize, we place special emphasis on the renal mechanisms of protection against temperature extremes, focusing on two important protein groups: heat shock proteins and sirtuins.


Assuntos
Desidratação , Nefropatias , Humanos , Desidratação/metabolismo , Mudança Climática , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Temperatura
11.
J Food Sci ; 89(4): 2025-2039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465674

RESUMO

Microbial contamination of dehydrated onion products is a challenge to the industry. The study focused on opting for a suitable drying condition for minced onion and exploring the decontamination efficacy of pulsed light (PL) treatment conditions for the dehydrated product. The minced onions were hot air dried at 55-75°C for 280 min. The drying condition selected was 195 min at 75°C with a final water activity of 0.5 and moisture content of 7% (wet basis [w.b.]). The weight losses, browning indexes (BI), shrinkage volumes (%), and thiosulfinate content were considered. The dehydrated product was exposed to PL treatment corresponding to an effective fluence range of 0.007-0.731 J/cm2. A fluence of 0.444 J/cm2 (1.8 kV for 150 s) achieved 5.00, 3.14, 2.96, and 2.98 log reduction in total plate count, yeast and mold count, Bacillus cereus 10876, and Escherichia coli ATCC 43888, respectively. The PL-treated sample (0.444 J/cm2) produced a microbially safe product with no significant difference in the moisture contents (%w.b.) and water activity (aw) from the untreated dehydrated sample. Further, a 30.9% increase in the BI and a 4.25% depletion in thiosulfinate content were observed after PL treatment. An optimum drying combination (75°C for 195 min) of minced onion followed by decontamination using pulsed light treatment at 0.444 J/cm2 fluence satisfies the microbial safety and quality. PRACTICAL APPLICATION: Dehydrated minced onion can be used for dishes requiring low water content and short cooking time. It is helpful during shortages, high price fluctuations, and famines.


Assuntos
Escherichia coli O157 , Cebolas , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Descontaminação , Desidratação , Água/farmacologia , Luz
12.
Physiol Rep ; 12(5): e15970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479999

RESUMO

The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Nax , the brain's Na sensor, exists. Specialized neural nuclei, namely the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), which lack the blood-brain barrier, play pivotal roles. Within the glia enveloping the neurons in these regions, Nax collaborates with Na+ /K+ -ATPase and glycolytic enzymes to drive glycolysis in response to elevated Na levels. Lactate released from these glia cells activates nearby inhibitory neurons. The SFO hosts distinct types of angiotensin II-sensitive neurons encoding thirst and salt appetite, respectively. During dehydration, Nax -activated inhibitory neurons suppress salt-appetite neuron's activity, whereas salt deficiency reduces thirst neuron's activity through cholecystokinin. Prolonged dehydration increases the Na sensitivity of Nax via increased endothelin expression in the SFO. So far, patients with essential hypernatremia have been reported to lose thirst and antidiuretic hormone release due to Nax -targeting autoantibodies. Inflammation in the SFO underlies the symptoms. Furthermore, Nax activation in the OVLT, driven by Na retention, stimulates the sympathetic nervous system via acid-sensing ion channels, contributing to a blood pressure elevation.


Assuntos
Sódio , Sede , Humanos , Sódio/metabolismo , Sede/fisiologia , Pressão Sanguínea , Apetite/fisiologia , Desidratação , Cloreto de Sódio/metabolismo , Encéfalo/metabolismo , Cloreto de Sódio na Dieta/metabolismo
13.
PLoS One ; 19(3): e0298336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466651

RESUMO

Single-humped camels are livestock of physical, physiological, and biochemical adaptations to hot desert environments and to water scarcity. The tolerance of camels to water deprivation and their exceptional capacity for rapid rehydration requires blood cells with membranes of specialized organization and chemical composition. The objectives of this study are to examine the changes in the area (a proxy for volume) of camel blood cells in solutions with decreasing concentrations of NaCl and consequently identify the conditions under which blood cells can be phenotyped in a large population. Whole-blood samples from three healthy adult female camels were treated with four different concentrations of NaCl and examined at six incubation-periods. Observationally, red blood cells in all treatments remained intact and maintained their elliptical shape while white blood cells experienced some damage, lysing at concentrations below 0.90%. Average basal (in 0.90% NaCl) RBC area was ~15 µm² and swelled in the various treatments, in some cases reaching twice its original size. Excluding the damaged cells, the average area of combined WBCs, ~32.7 µm², expanded approximately three times its original size. We find that camel WBCs, like their RBCs, are adapted to hypotonic environments, and are capable of expanding while maintaining their structural integrity.


Assuntos
Camelus , Cloreto de Sódio , Animais , Feminino , Camelus/fisiologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/análise , Soluções Hipotônicas/farmacologia , Eritrócitos/química , Desidratação
14.
Rapid Commun Mass Spectrom ; 38(9): e9719, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38500352

RESUMO

RATIONALE: As 3-OH-containing steroids are prone to dehydration by conventional electrospray ionization, reducing detection sensitivity, Li ion adduction-based ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS), developed to prevent dehydration and effectively detect 3-OH steroids, was applied for profiling total and free steroids in urine. METHODS: Free urinary steroids were isolated directly from urine by solid-phase extraction (SPE) with 80% acetonitrile. The total steroids were prepared by enzymatic treatment of urine with a cocktail of sulfatase and glucronidase, protein precipitation, and separation with the above SPE. In order to detect as many steroid types as possible, UHPLC/MS/MS (Li method) with Li+ solution added after the column was used for analysis in addition to the conventional method of detecting protonated ions (H method). The 13 3-OH steroids and the remaining 16 steroids were quantified by standard curves prepared using product ion transitions derived from [M + Li]+ and MH+ , respectively. RESULTS: Two groups of human urine, male and female urine, were analyzed. 3-OH steroids could be detected with greater sensitivity using the Li method than the conventional method. The absolute amounts of each steroid were normalized based on creatinine levels. The difference between the male and female groups are clearly attributable to sex steroids. CONCLUSIONS: Twenty-nine total steroids and 19 free steroids were identified in a limited volume (240 mL) of urine. Of these, 13 3-OH steroids were better detected by Li+ adduction-based UHPLC/MS/MS.


Assuntos
Lítio , Espectrometria de Massas em Tandem , Masculino , Feminino , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Desidratação , Esteroides/urina , Íons
15.
JAMA Netw Open ; 7(3): e242546, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38488792

RESUMO

Importance: Clinician specialization in the care of nursing home (NH) residents or patients in skilled nursing facilities (SNFs) has become increasingly common. It is not known whether clinicians focused on NH care, often referred to as SNFists (ie, physicians, nurse practitioners, and physician assistants concentrating their practice in the NH or SNF setting), are associated with a reduced likelihood of burdensome transitions in the last 90 days of life for residents, which are a marker of poor-quality end-of-life (EOL) care. Objective: To quantify the association between receipt of care from an SNFist and quality of EOL care for NH residents. Design, Setting, and Participants: This cohort study analyzed Medicare fee-for-service claims for a nationally representative 20% sample of beneficiaries to examine burdensome transitions among NH decedents at the EOL from January 1, 2013, through December 31, 2019. Statistical analyses were conducted from December 2022 to June 2023. Exposure: Receipt of care from an SNFist, defined as physicians and advanced practitioners who provided 80% or more of their evaluation and management visits in NHs annually. Main Outcomes and Measures: This study used augmented inverse probability weighting in analyses of Medicare fee-for-service claims for a nationally representative 20% sample of beneficiaries. Main outcomes included 4 measures of burdensome transitions: (1) hospital transfer in the last 3 days of life; (2) lack of continuity in NHs after hospitalization in the last 90 days of life; (3) multiple hospitalizations in the last 90 days of life for any reason or any hospitalization for pneumonia, urinary tract infection, dehydration, or sepsis; and (4) any hospitalization in the last 90 days of life for an ambulatory care-sensitive condition. Results: Of the 2 091 954 NH decedents studied (mean [SD] age, 85.4 [8.5] years; 1 470 724 women [70.3%]), 953 722 (45.6%) received care from SNFists and 1 138 232 (54.4%) received care from non-SNFists; 422 575 of all decedents (20.2%) experienced a burdensome transition at the EOL. Receipt of care by an SNFist was associated with a reduced risk of (1) hospital transfer in the last 3 days of life (-1.6% [95% CI, -2.5% to -0.8%]), (2) lack of continuity in NHs after hospitalization (-4.8% [95% CI, -6.7% to -3.0%]), and (3) decedents experiencing multiple hospitalizations for any reason or any hospitalization for pneumonia, urinary tract infection, dehydration, or sepsis (-5.8% [95% CI, -10.1% to -1.7%]). There was not a statistically significant association with the risk of hospitalization for an ambulatory care-sensitive condition in the last 90 days of life (0.0% [95% CI, -14.7% to 131.7%]). Conclusions and Relevance: This study suggests that SNFists may be an important resource to improve the quality of EOL care for NH residents.


Assuntos
Pneumonia , Sepse , Assistência Terminal , Infecções Urinárias , Humanos , Feminino , Idoso , Estados Unidos , Idoso de 80 Anos ou mais , Estudos de Coortes , Desidratação , Medicare , Casas de Saúde , Pneumonia/epidemiologia , Pneumonia/terapia
16.
Sci Rep ; 14(1): 7188, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531917

RESUMO

The knowledge of proper fertigation across various irrigation levels is necessary for maximizing peanut yield and irrigation use efficiency in arid areas, and it also can effectively alleviate the risk of nutrient deficiency induced by water stress. This study evaluated the effectiveness of cobalt combined with two zinc application methods on peanut nutrient uptake, yield, and irrigation water use efficiency across varying irrigation levels. A split-split plot experiment was carried out in 2021 and 2022. Three peanut gross water requirement (GWR) levels (100%, 80%, and 60%) were designated for main plots. Subplots featured plants treated with either 0 or 7.5 mg L-1 of cobalt. The sub-sub plots assessed chelated zinc effects at rates of 0 and 2 g L-1 via foliar and soil applications. In comparison to the control (100% GWR), nutrient uptake decreased, with sodium being the exception, and there was an increase in soil pH at 60% GWR. The results showed also significant reductions in yield and water use by approximately 60.3% and 38.1%, respectively. At this irrigation level, applying zinc via soil, either alone or combined with cobalt, led to significant yield increases of 89.7% and 191.3% relative to the control. Also, it's crucial to note that cobalt application negatively affected iron and copper at 60% GWR, but this impact was lessened with soil-applied zinc. Hence, under a similar circumstance, treating stressed peanut plants with additional foliar applications of iron + copper and applying zinc via soil, could enhance nutrient uptake and improve yield. On the other hand, at 80% GWR, a combination of foliar-applied zinc and cobalt, had a tremendous impact on the absorption of (nitrogen, phosphorus, magnesium, and zinc), resulting in enhanced agronomic traits and decreased water losses. Additionally, at this irrigation level, foliar zinc application alone yielded a 32.4% increase compared to the 80% GWR control. When combined with cobalt, there was a 70.0% surge in water use. Based on this knowledge, the study suggests using 80% GWR and treating peanut plants with a combination of foliar-applied zinc and cobalt. This strategy aids plants in countering the adverse effects of water stress, ultimately leading to enhanced yield and irrigation water use efficiency.


Assuntos
Arachis , Zinco , Desidratação , Cobre , Solo , Nutrientes , Ferro , Irrigação Agrícola
17.
J Mech Behav Biomed Mater ; 153: 106468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493561

RESUMO

A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture.


Assuntos
Desidratação , Fraturas Ósseas , Humanos , Modelos Biológicos , Osso Cortical/diagnóstico por imagem , Osso e Ossos , Fraturas Ósseas/diagnóstico por imagem
18.
BMC Plant Biol ; 24(1): 180, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459432

RESUMO

BACKGROUND: Primary response genes play a pivotal role in translating short-lived stress signals into sustained adaptive responses. In this study, we investigated the involvement of ATL80, an E3 ubiquitin ligase, in the dynamics of gene expression following water deprivation stress. We observed that ATL80 is rapidly activated within minutes of water deprivation stress perception, reaching peak expression around 60 min before gradually declining. ATL80, despite its post-translational regulation role, emerged as a key player in modulating early gene expression responses to water deprivation stress. RESULTS: The impact of ATL80 on gene expression was assessed using a time-course microarray analysis (0, 15, 30, 60, and 120 min), revealing a burst of differentially expressed genes, many of which were associated with various stress responses. In addition, the diversity of early modulation of gene expression in response to water deprivation stress was significantly abolished in the atl80 mutant compared to wild-type plants. A subset of 73 genes that exhibited a similar expression pattern to ATL80 was identified. Among them, several are linked to stress responses, including ERF/AP2 and WRKY transcription factors, calcium signaling genes, MAP kinases, and signaling peptides. Promoter analysis predicts enrichment of binding sites for CAMTA1 and CAMTA5, which are known regulators of rapid stress responses. Furthermore, we have identified a group of differentially expressed ERF/AP2 transcription factors, proteins associated with folding and refolding, as well as pinpointed core module genes which are known to play roles in retrograde signaling pathways that cross-referenced with the early ATL80 transcriptome. CONCLUSIONS: Based on these findings, we propose that ATL80 may target one or more components within the retrograde signaling pathways for degradation. In essence, ATL80 serves as a bridge connecting these signaling pathways and effectively functions as an alarm signal.


Assuntos
Ubiquitina-Proteína Ligases , Privação de Água , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Desidratação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-38462029

RESUMO

The embryonic development of many ectothermic species are highly sensitive to temperature and typically have a higher thermal optima than do most other physiological processes. Thus, female ectotherms often maintain a higher and more carefully controlled body temperature when she is supporting developing embryos (early development in oviparous species, throughout development in viviparous species). Considering the positive correlation between body temperature and evaporative water loss, this response could potentially exacerbate female water imbalance in water-limited environments, suggesting that female water balance and egg development may be in conflict. Using Children's pythons (Antaresia childreni), we hypothesized that water deprivation reduces thermophily during gravidity. We split reproductive females into two thermal treatments: those provided with a continuously available thermal gradient of 25-45 °C and those kept at a constant 31 °C. We also had seven non-reproductive females that were provided a thermal gradient. Within each thermal treatment group, we alternatingly assigned females to either have or not have water throughout gravidity. We found that reproduction increased female body temperature, but this increase was not affected by water regime. Reproduction also increased plasma osmolality, and lack of water during gravidity exacerbated this effect. We also found that thermal treatment, but not water regime, significantly influenced gravidity duration, with females given a thermogradient having a shorter gravidity duration, likely as a result of having a higher average body temperature than did the females provided constant heat. Finally, we found that females provided water throughout gravidity had greater clutch masses than did females without water. Further research is needed to improve scientific understanding of the interactions among water balance, body temperature, and various physiological performances.


Assuntos
Temperatura Corporal , Boidae , Criança , Gravidez , Feminino , Animais , Humanos , Número de Gestações , Boidae/fisiologia , Desidratação , Água , Temperatura , Febre , Regulação da Temperatura Corporal
20.
J Phys Chem A ; 128(12): 2317-2322, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489273

RESUMO

Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.


Assuntos
Desidratação , Água , Humanos , Água/química , Análise Espectral , Proteínas , Ubiquitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...